Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 44(4): 2171-2194, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35357643

RESUMO

Intermittent fasting (IF) remains the most effective intervention to achieve robust anti-aging effects and attenuation of age-related diseases in various species. Epigenetic modifications mediate the biological effects of several environmental factors on gene expression; however, no information is available on the effects of IF on the epigenome. Here, we first found that IF for 3 months caused modulation of H3K9 trimethylation (H3K9me3) in the cerebellum, which in turn orchestrated a plethora of transcriptomic changes involved in robust metabolic switching processes commonly observed during IF. Second, a portion of both the epigenomic and transcriptomic modulations induced by IF was remarkably preserved for at least 3 months post-IF refeeding, indicating that memory of IF-induced epigenetic changes was maintained. Notably, though, we found that termination of IF resulted in a loss of H3K9me3 regulation of the transcriptome. Collectively, our study characterizes the novel effects of IF on the epigenetic-transcriptomic axis, which controls myriad metabolic processes. The comprehensive analyses undertaken in this study reveal a molecular framework for understanding how IF impacts the metabolo-epigenetic axis of the brain and will serve as a valuable resource for future research.


Assuntos
Epigenômica , Transcriptoma , Jejum , Perfilação da Expressão Gênica , Encéfalo
2.
Ther Adv Neurol Disord ; 11: 1756286418771815, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774056

RESUMO

Despite extensive research, treatments for clinical stroke are still limited only to the administration of tissue plasminogen activator and the recent introduction of mechanical thrombectomy, which can be used in only a limited proportion of patients due to time constraints. A plethora of inflammatory events occur during stroke, arising in part due to the body's immune response to brain injury. Neuroinflammation contributes significantly to neuronal cell death and the development of functional impairment and death in stroke patients. Therefore, elucidating the molecular and cellular mechanisms underlying inflammatory damage following stroke injury will be essential for the development of useful therapies. Research findings increasingly point to the likelihood that epigenetic mechanisms play a role in the pathophysiology of stroke. Epigenetics involves the differential regulation of gene expression, including those involved in brain inflammation and remodelling after stroke. Hence, it is conceivable that epigenetic mechanisms may contribute to differential interindividual vulnerability and injury responses to cerebral ischaemia. In this review, we summarize recent findings on the emerging role of epigenetics in the regulation of neuroinflammation in stroke. We also discuss potential epigenetic targets that may be assessed for the development of stroke therapies.

3.
Front Biosci (Elite Ed) ; 3(3): 1079-91, 2011 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622115

RESUMO

Costunolide, a sesquiterpene lactone present in Costus speciosus root exerts a variety of pharmacological activity but its effects on neuroinflammation have not been studied. Microglia, the resident phagocytic cells in the central nervous system respond to neuroinflammation and their overwhelming response in turn aggravate brain damage during infection, ischemia and neurodegenerative diseases. In this study, we report the effect of Costunolide on the production of proinflammatory mediators and mechanisms involved in BV2 microglial cells stimulated with LPS. Costunolide attenuated the expression of tumour necrosis factor-alpha, interleukin-1,6, inducible nitric oxide synthase, monocyte chemotactic protein 1 and cyclooxygenase 2 in activated microglia. This Costunolide-mediated inhibition was correspondent with the inhibition of NFkappaB activation. It has been further shown that Costunolide suppressed MAPK pathway activation by inducing MKP-1 production. Collectively our results suggest that Costunolide shows an ability to inhibit expression of multiple neuroinflammatory mediators and this is attributable to the compounds inhibition of NFkappaB and MAPK activation. This novel role of Costunolide upon investigation may aid in developing better therapeutic strategies for treatment of neuroinflammatory diseases.


Assuntos
Citocinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Sesquiterpenos/farmacologia , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Imunofluorescência , Camundongos , Microglia/enzimologia , Microglia/metabolismo , Óxido Nítrico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...